A 3D adaptive mesh moving scheme

نویسندگان

  • Harish Kanchi
  • Arif Masud
چکیده

This paper presents an adaptive mesh moving technique for three-dimensional (3D) fluid flow problems that involve moving fluid boundaries and fluid–solid interfaces. Such mesh moving techniques are an essential ingredient of fluid–structure interaction methods that typically employ arbitrary Lagrangian– Eulerian (ALE) frameworks. In the ALE frame, the velocity field representing motion of the underlying continuum is integrated in the fluid flow equations. In the discretized setting, the velocity field of the underlying continuum gives rise to the mesh displacement field that needs to be solved for in addition to the flow equations and the structural equations. Emphasis in the present work is on the motion and deformation of 3D grids that are composed of linear tetrahedral and hexahedral elements in structured and unstructured configurations. The proposed method can easily be extended to higher-order elements in 3D. A variety of moving mesh problems from different fields of engineering are presented that show the range of applicability of the proposed method and the class of problems that can be addressed with it. Copyright q 2007 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moving Mesh Non-standard Finite Difference Method for Non-linear Heat Transfer in a Thin Finite Rod

In this paper, a moving mesh technique and a non-standard finite difference method are combined, and a moving mesh non-standard finite difference (MMNSFD) method is developed to solve an initial boundary value problem involving a quartic nonlinearity that arises in heat transfer with thermal radiation. In this method, the moving spatial grid is obtained by a simple geometric adaptive algorithm ...

متن کامل

An Adaptive-Robust Control Approach for Trajectory Tracking of two 5 DOF Cooperating Robot Manipulators Moving a Rigid Payload

In this paper, a dual system consisting of two 5 DOF (RRRRR) robot manipulators is considered as a cooperative robotic system used to manipulate a rigid payload on a desired trajectory between two desired initial and end positions/orientations. The forward and inverse kinematic problems are first solved for the dual arm system. Then, dynamics of the system and the relations between forces/momen...

متن کامل

A Moving Mesh Finite Element Algorithmfor Singular Problems in Two and ThreeSpace Dimensions

A framework for adaptive meshes based on the Hamilton–Schoen–Yau theory was proposed by Dvinsky. In a recent work (2001, J. Comput. Phys. 170, 562– 588), we extended Dvinsky’s method to provide an efficient moving mesh algorithm which compared favorably with the previously proposed schemes in terms of simplicity and reliability. In this work, we will further extend the moving mesh methods based...

متن کامل

Helicopter Rotor Airloads Prediction Using CFD and Flight Test Measurement in Hover Flight

An implicit unsteady upwind solver including a mesh motion approach was applied to simulate a helicopter including body, main rotor and tail rotor in hover flight. The discretization was based on a second order finite volume approach with fluxes given by the Roeand#39;s scheme. Discretization of Geometric Conservation Laws (GCL) was devised in such a way that the three-dimensional flows on arbi...

متن کامل

muove: Galiliean-invariant cosmological hydrodynamical simulations on a moving mesh

Hydrodynamic cosmological simulations at present usually employ either the Lagrangian smoothed particle hydrodynamics (SPH) technique, or Eulerian hydrodynamics on a Cartesian mesh with (optional) adaptive mesh refinement (AMR). Both of these methods have disadvantages that negatively impact their accuracy in certain situations, for example the suppression of fluid instabilities in the case of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007